EFFECT OF GRAFTING HEIGHT ON SUCCESS AND GROWTH OF ACID LIME

(Citrus aurantifolia Swingle) SAPLING

B. Chalise*, K.P. Paudyal**, S.P. Srivastava*, M.K. Thakur***, K. Bhandari* and H.P. Subedi*

*National Citrus Research Program, Paripatle

**Horticulture Research Division, Khumaltar, Lalitpur

*** CPDD, Khumaltar, Lalitpur

ABSTRACT

A field experiment was conducted at National Citrus Research Program (NCRP), Paripatle, Dhankuta to determine the best grafting height for the highest success of grafting and the maximum growth of sapling during 1st January to 30th December, 2010. Scions were collected from the mother plant 'NCRP-49' grown under screen house and grafted on to one-year-old trifoliate orange seedling rootstocks by shoot-tip method at 4 cm, 8 cm, 12 cm, 16 cm and 20 cm height from the collar region as the treatment. The grafts were planted inside the closed tunnel made from bamboo splits, jute and plastic sheet at 10×8 cm spacing in 64×100 cm experimental plots laid out in randomized complete block design (RCBD) with four replications containing 80 grafts per plot. Treatments were allotted on the experimental plots randomly. The success of grafting was not affected by the height of grafting, however growth of sapling was found significantly affected by the height of grafting. Observation taken on sapling after one year of grafting revealed that the maximum scion height (42.13 cm), the highest number of leaves per sapling (47.50), the highest growth of scion diameter (55.61%), maximum length of primary branches (31.19 cm), maximum number of secondary branches per sapling ((3.24), the highest length of secondary branches (11.59 cm), the highest canopy volume (15440 cm³) and the highest graft spread (24.35 cm) were found on sapling grafted at 16 cm height of the trifoliate orange rootstock. Hence, from the study it is concluded that the most suitable height of grafting acid lime on trifoliate orange rootstock was 16

Key words: Citrus aurantifolia, Poncirus trifoliata, shoot-tip, callus, graft success, graft spread and canopy volume

INTRODUCTION

Citrus is the most important fruit crop of mid-hill region of Nepal. APP (1995) has envisaged citrus as the number one priority crop for mid-hill region. Citrus is commercially cultivated in 42 mid-hill districts (Regmi et al., 2009). Acid lime is the third important citrus crop of Nepal after mandarin and sweet orange in terms of area coverage, production and productivity (MOAC, 2009). Unlike mandarin and sweet orange, acid lime can be cultivated successfully from Terai to mid-hill region of Nepal. There is a great scope of acid lime production in Nepal. About 95% of annual market demand of acid lime fruits supplied in the main season and 100% in the off-season in Kathmandu were imported from India (Dhakal et al., 2003). Dhakal et al. (2002) also reported that 2110 tons of acid lime worth Rupees 60 millions was imported annually from India (Dhakal, 2002). He also reported that in Nepal, 81% of acid lime saplings are raised from seedling.

The production and productivity of acid lime is very low in Nepal due to the use of seedling for plantation, less care and management of the orchard and plantation of sapling in marginal land. Moreover, the seedling trees are susceptible to *Phytophthora* root rot disease as compared to grafted ones. Saplings prepared by grafting acid lime on to trifoliate orange *Poncirus trifoliata* (L.) Raf. are tolerant of *Phytophthora* gummosis, cachexia-xyloporosis and nematodes, especially the *Tylenchulus semipenetrans*. The rootstock is also resistant to the citrus tristeza virus (Aubert and Vullin, 1998). The demand of grafted sapling is growing day by day within the country. Trifoliate orange seedling has poor growth in open field condition. About two or more years seedling of trifoliate are being used for the grafting purpose. Some seedlings are very dwarf to be grafted with suitable scions. Grafting at too low height can create problem of rot disease at the point of union of sapling after plantation. Therefore, a field experiment was carried out at National Citrus Research

Program, Paripatle, Dhankuta to find the suitable height of grafting, giving the maximum success of grafting and the optimum growth of the sapling at nursery stage.

MATERIALS AND METHODS

The study was carried out at NCRP, Paripatle, Dhankuta, during 1st January to 30th December, 2010. About 8 months old scions were taken from the mother plant of acid lime 'NCRP-49' accession grown inside the screen house. Scions were grafted onto one-year-old trifoliate orange seedling rootstocks by shoot-tip method at five different heights (4 cm, 8 cm, 12 cm, 16 cm and 20 cm) from the collar region of the rootstock as the treatment. The grafts were planted inside the closed tunnel made from bamboo splits, jute sheet cover from inside and plastic sheet cover from outside at 10×8 cm spacing in experimental plots laid out in randomized complete block design (RCBD) with four replications. Each 64×100 cm sized experimental plots were supplied with a total of 10 kg vermi-compost (Nitrogen 1.25-2.5%, Phosphorus 0.75-1.6% and Potash 0.5-1.1%) containing 80 grafts. The distance between replications and between plots was 50 cm and 25 cm respectively. Treatments were allotted on the experimental plots randomly. 10 plants were selected from each experimental plot for the study. The regular de-suckering, irrigation, plant protection, weeding, hoeing and top-dressing, removal of plastic laces, removal of jute and plastic sheet were done timely in each experimental plot for better growth of the sapling. The recorded data were reduced, arranged in MS-Excel and analyzed by MSTAT-C package. The means were separated by Duncan's Multiple Range Test (DMRT).

RESULTS AND DISCUSSION

Graft success

The sprouting of the graft is considered as the success of grafting in the final observation. At the initial observation, all the grafts were not sprouted, therefore success is not conformed. Graft success is the major criteria for the selection of the suitable method of grafting, time of grafting and grafting height of the sapling. In the present study, the success of grafting was not found to be significantly affected by the height of grafting. However, at final observation of success at 180 days after grafting, the highest success (99.37%) was observed in 16 cm grafting height followed by 20 cm grafting height (99.06%) and the lowest (97.81%) in 8 cm grafting height (Figure 1).

Present finding was also supported by Poon (1999) reported 88.73%, Gautam et al. (2001) reported 87.5%, Chalise (2010) reported 77.78% graft success in mandarin with shoot-tip method whereas Adhikari (2006) reported 79.73% success in acid lime grafted onto trifoliate orange rootstock. The present result was higher than previous findings which may be due to more experienced grafting persons, more suitable temperature and humidity for callusing and more care of grafts after planting.

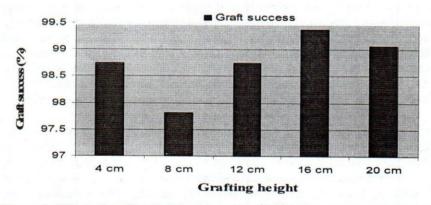


Figure 1. Effect of grafting height on success of acid lime grafting at 180 days after grafting in Paripatle, Dhankuta, 2010

Growth of scion height

The growth of scion height was significantly affected by the grafting height at 180 and 300 days after grafting while non significant at rest of the observations. At 180 days after grafting, the maximum growth of

scion height (27.83 cm) was observed in 16 cm grafting height which was followed by grafting at 20 cm grafting height. Similarly, at 300 days after grafting, the highest growth of scion height (39.75 cm) was produced by sapling grafted at 16 cm height followed by 20 cm grafted sapling and the lowest in 4 cm grafted sapling. At 360 days after grafting the highest growth (42.13 cm) was again produced in 16 cm height grafted sapling and the lowest scion height in 4 cm height grafted sapling (Table 1).

Table 1: Effect of grafting height on growth of scion height of acid lime sapling in Paripatle, Dhankuta,

2010						
Treatments	editor editor		76 -(L			
(Grafting height)	60 DAG	120 DAG	180 DAG	240 DAG	300	360
					DAG	DAG
Grafting at 4 cm	7.230	15.61	17.76°	24.13	30.35 ^b	32.07
Grafting at 8 cm	8.125	17.30	20.51bc	25.66	30.39 ^b	33.64
Grafting at 12 cm	8.602	18.44	22.94abc	27.01	32.90 ^{ab}	35.09
Grafting at 16 cm	7.403	19.18	27.83 ^a	31.24	39.75a	42.13
Grafting at 20 cm	6.938	17.56	23.69ab	28.35	35.45ab	38.11
F value	0.86 ^{ns}	1.31 ns	5.08*	2.49 ^{ns}	3.35*	3.17 ns
CV (%)	19.28	13.36	14.77	12.60	12.78	12.37
CD (P≤0.05)	2.275	3.627	5.132	5.294	6.649	6.903
SEm±	0.7382	1.177	1.666	1.718	2.158	2.240

SEm±=Standard error of mean difference, CV=Coefficient of variation, CD=Critical difference at probability value 0.05, Treatment means followed by common letter(s) are not significantly different at 5% by DMRT, DAG=Days after grafting

Present finding was also supported by Dubey and Singh (2003). They reported 29.53 cm scion height at 11 months after grafting Darjeeling mandarin grafted onto rough lemon rootstock. Scion height of 21.23 cm was reported by Adhikari (2006) in acid lime grafted onto trifoliate orange rootstock at 4 months after grafting. Similarly, Chalise (2010) reported 17.86 cm height of mandarin at 6 months after grafting onto trifoliate orange rootstock. However, the present result was higher than past findings.

Number of leaves per sapling

The number of leaves per sapling prepared by grafting at different height on the rootstock was found significant at 300 days after grafting while non significant at the rest of the observations. At 300 days after grafting, the significantly higher number of leaves per sapling (53.00) was observed in sapling grafted at 16 cm height which was followed by the sapling grafted at 12 cm height. Statistically, 12 cm and 16 cm grafting height were at par. The lowest number of leaves was produced in sapling grafted at the 4 cm height. At 360 days after grafting, all the grafting heights were not significantly different statistically; however, the maximum leaf number (47.50) was in 16 cm height grafting (Table 2). This may be due to fast healing of the wound of graft at this height.

Table 2: Effect of grafting height on number of leaves per sapling of acid lime in Paripatle, Dhankuta, 2010

Treatments	Number of leaves						
(Grafting height)	60 DAG	120	180 DAG	240 DAG	300	360 DAG	
Control of the	Substitute of St.	DAG			DAG		
Grafting at 4 cm	5.600	19.66	23.15	29.85	38.85 ^b	39.75	
Grafting at 8 cm	7.000	21.50	23.13	32.22	43.05 ^b	42.58	
Grafting at 12 cm	8.550	25.18	26.90	35.05	45.83ab	44.65	
Grafting at 16 cm	7.452	24.53	25.80	31.95	53.00 ^a	47.50	
Grafting at 20 cm	7.850	23.38	25.20	30.85	42.42 ^b	42.88	
F value	2.59 ^{ns}	2.19 ^{ns}	1.22 ^{ns}	0.92 ^{ns}	3.47*	0.89 ^{ns}	
CV (%)	18.77	13.39	12.13	12.70	12.74	13.89	
CD (P≤0.05)	2.108	4.713	4.639	6.259	8.762	9.303	
SEm±	0.6841	1.530	1.506	2.031	2.844	3.019	

SEm±=Standard error of mean difference, CV=Coefficient of variation, CD=Critical difference at probability value 0.05, Treatment means followed by common letter(s) are not significantly different at 5% by DMRT, DAG=Days after grafting

Present finding was also supported by Dubey and Singh (2003). They observed 47 leaves per sapling in Darjeeling mandarin grafted onto rough lemon at 330 days after grafting. In another study, Adhikari (2006) reported the highest number of leaves (47) per plant at 135 days after grafting in acid lime in Chitwan. Similarly, Chalise (2010) reported 48.47 leaves of mandarin sapling at 180 days after grafting.

Growth of diameter

The growth of diameter of different parts of sapling was studied during the research periods. The growth of collar diameter, below the union diameter and at the union diameter were found statistically non significant. However, the growth of scion diameter was found significant at 360 days after grafting. The highest growth (104%) of collar region was given by 16 cm grafting height and the lowest (69.11%) by 4 cm grafting height. Below the union diameter was maximum (67.46%) in 8 cm grafting height and the lowest (54.14%) in 20 cm height grafting. Similarly, the highest growth of union diameter (79.24%) was given by 16 cm grafting height and the lowest (62.34%) by 20 cm grafting height. The scion diameter growth was recorded maximum (55.61%) in 16 cm grafting height and the minimum (28.06%) in 8 cm grafting height. Among the four different parts of sapling the collar diameter growth was found maximum followed by union diameter and below the union diameter and the least growth on scion diameter (Figure 2).

With regards to the growth of sapling diameter, Adhikari (2006) reported the highest growth (67.88%) of the scion diameter, while Chalise (2010) recorded the highest growth (60.33%) of collar diameter over the initial growth among collar diameter, below the union diameter union diameter and scion diameter.

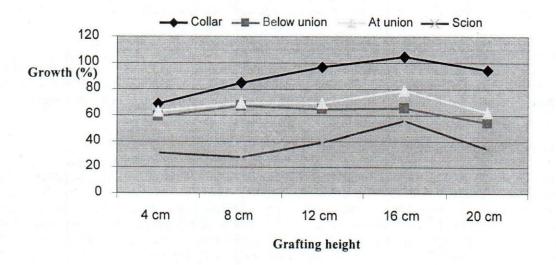


Figure 2. Effect of grafting height on growth of diameter of different part of acid lime sapling over initial growth at 360 days after grafting in Paripatle, Dhankuta, 2010

Number of primary branches per sapling

The number of primary branches per sapling was found non significant in 60 to 360 days after grafting in the present study. However, at 360 days after grafting the highest number of primary branches per sapling (2.425) was produced by the sapling grafted at 12 cm height which was followed by 4 cm grafting height and the lowest number of primary branches was recorded in sapling grafted at 16 cm height (Table 3).

Table:3 Effect of grafting height on number of primary branches per sapling of acid lime in Paripatle,
Dhankuta, 2010

Treatments	15-1	Number of primary branches					
(Grafting height)	60 DAG	120	180 DAG	240	300	360	
		DAG		DAG	DAG	DAG	
Grafting at 4 cm	1.350	1.773	1.875	1.925	2.075	2.283	
Grafting at 8 cm	1.425	1.725	1.750	1.775	1.865	2.125	
Grafting at 12 cm	1.500	1.975	2.050	2.100	2.275	2.425	
Grafting at 16 cm	1.550	1.650	1.655	1.737	1.837	2.095	
Grafting at 20 cm	1.400	1.775	1.850	1.900	1.975	2.150	
F value	0.78 ^{ns}	0.65 ^{ns}	0.97 ^{ns}	0.93 ^{ns}	2.04 ^{ns}	0.68 ^{ns}	
CV (%)	12.54	16.76	16.38	15.68	12.39	15.04	
CD (P≤0.05)	0.2799	0.4596	0.4622	0.4570	0.3836	0.5133	
SEm±	0.09083	0.1492	0.1500	0.1483	0.1245	0.1666	

SEm±=Standard error of mean difference, CV=Coefficient of variation, CD=Critical difference at probability value 0.05, Treatment means followed by common letter(s) are not significantly different at 5% by DMRT, DAG=Days after grafting

Length of primary branches

The length of primary branches was found significant at 180, 300 and 360 days after grafting while non significant at the rest of the observations. At 180 days after grafting the highest length of primary branches (18.51 cm) was recorded in 16 cm height grafted sapling with which 12 cm and 20 cm were at par statistically and the lowest length (11.70cm) was recorded in 4 cm grafting height. At 300 days after grafting, maximum height (27.92 cm) was recorded in 16 cm and the lowest (20.55 cm) by 4 cm height of grafting. At 360 days after grafting, the highest length (31.19 cm) was recorded in 16 cm height of grafting and the lowest (21.86 cm) in 4 cm grafting height (Table 4).

Table 4. Effect of grafting height on length of primary branches of acid lime sapling in Paripatle, Dhankuta, 2010

2010								
Treatments	Length of primary branches (cm)							
(Grafting height)	60 DAG	120 DAG	180 DAG	240 DAG	300 DAG	360 DAG		
Grafting at 4 cm	4.545	10.20	11.70 ^b	16.54	20.55b	21.86 b		
Grafting at 8 cm	5.242	10.93	13.85 ^b	18.06	22.21 ^b	23.02 b		
Grafting at 12 cm	5.773	11.49	14.65ab	17.09	22.08 ^b	23.74 b		
Grafting at 16 cm	4.975	12.37	18.51a	22.83	27.92ª	31.19 ^a		
Grafting at 20 cm	4.863	11.27	14.75ab	19.07	25.20ab	27.40° b		
F value	0.66 ^{ns}	0.81 ^{ns}	3.39*	2.41 ^{ns}	3.61*	4.28*		
CV(%)	22.32	15.70	18.19	17.13	13.16	14.54		
CD (P≤0.05)	1.747	2.721	4.118	4.940	4.784	5.699		
SEm±	0.5670	0.8830	1.336	1.603	1.553	1.849		

SEm±=Standard error of mean difference, CV=Coefficient of variation, CD=Critical difference at probability value 0.05, Treatment means followed by common letter(s) are not significantly different at 5% by DMRT, DAG=Days after grafting

Number of secondary branches per sapling

The secondary branches of sapling were recorded only after 4 months after grafting. The number of secondary branches were found non significant at 120 days to 360 days after grafting. However, at 360 days after grafting, the highest number of secondary branches (3.24) was produced by the sapling prepared by the grafting at 16 cm height which was followed by 12 cm height grafted sapling (3.158) and the lowest number (2.438) was produced by sapling grafted at 4 cm height (Table 5).

Table:5. Effect of grafting height on number of secondary branches per sapling of acid lime in Paripatle,
Dhankuta 2010

Dilaiikuta, 20	310						
Treatments	Number of secondary branches						
(Grafting height)	120 DAG	180 DAG	240 DAG	300 DAG	360 DAG		
Grafting at 4 cm	0.6250	1.150	1.490	2.120	2.438		
Grafting at 8 cm	1.188	1.500	1.700	2.582	2.905		
Grafting at 12 cm	1.300	1.858	2.033	2.707	3.158		
Grafting at 16 cm	0.8750	1.450	1.825	2.780	3.240		
Grafting at 20 cm	1.325	1.543	1.658	2.257	2.738		
F value	1.21 ^{ns}	1.47 ^{ns}	0.62 ^{ns}	0.92 ^{ns}	1.07 ^{ns}		
CV (%)	51.80	27.74	29.41	24.03	21.70		
CD (P≤0.05)	0.8481	0.6408	0.7886	0.9218	0.9683		
SEm±	0.2752	0.2080	0.2559	0.2992	0.3142		

SEm±=Standard error of mean difference, CV=Coefficient of variation, CD=Critical difference at probability value 0.05, Treatment means followed by common letter(s) are not significantly different at 5% by DMRT, DAG=Days after grafting

Length of secondary branches

The length of secondary branches was found significant at 180 and 360 days after grafting and non significant at the rest of observations. At 180 days after grafting, the highest length (7.91 cm) of secondary branches was recorded in 20 cm height grafted sapling which was followed by 12 cm grafted sapling (7.44 cm) and the lowest length (5.42 cm) by 4 cm height grafted sapling. At 360 days after grafting, the highest length (11.59 cm) of secondary branches was given by 16 cm height grafted sapling followed by 20 cm grafted sapling (10.20 cm) and the lowest (9.21 cm) by 8 cm height grafted sapling (Table 6).

Table 6. Effect of grafting height on length of secondary branches of acid lime sapling in Paripatle,
Dhankuta, 2010

Treatments	Length of secondary branches (cm)						
(Grafting height)	120 DAG	180 DAG	240 DAG	300 DAG	360 DAG		
Grafting at 4 cm	3.000	5.425 ^b	7.443	8.922	9.467 ^b		
Grafting at 8 cm	5.222	6.645ab	7.730	8.637	9.215b		
Grafting at 12 cm	5.500	7.445a	8.300	9.495	9.795 b		
Grafting at 16 cm	4.068	7.155a	9.738	10.81	11.59 ^a		
Grafting at 20 cm	6.918	7.915a	8.967	9.578	10.20ab		
F value	1.79 ^{ns}	3.96*	3.24 ^{ns}	2.96 ^{ns}	3.65*		
CV (%)	44.86	13.84	12.28	10.24	9.71		
CD (P≤0.05)	3.415	1.475	1.596	1.497	1.505		
SEm±	1.108	0.4785	0.5179	0.4858	0.4884		

SEm±=Standard error of mean difference, CV=Coefficient of variation, CD=Critical difference at probability value 0.05, Treatment means followed by common letter(s) are not significantly different at 5% by DMRT, DAG=Days after grafting

Graft spread

The average graft spread of sapling was found highly significant at 180, 300 and 360 days after grafting, significant at 240 days after grafting and non significant at the rest of the observations. At 180 days after grafting, the maximum graft spread (12.43 cm) was observed on 16 cm height grafted sapling and the minimum (9.62 cm) in 4 cm grafted sapling. Similarly, at 240 and 300 days after grafting the highest graft spread was recorded in sapling grafted at 16 cm height followed by 20 cm height grafted sapling and the lowest in 4 cm height grafted sapling. Again at 360 days after grafting, the extra graft spread (24.35 cm) was recorded in 16 cm height followed by 20 cm and the lowest in 4 cm height grafted sapling (Figure 3).

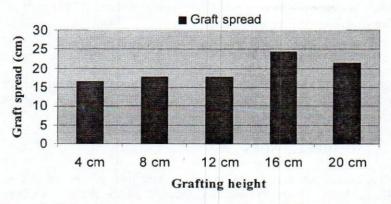


Figure 3. Effect of grafting height on spread of acid lime sapling at 360 days after grafting in Paripatle,
Dhankuta, 2010

Canopy volume

Canopy volume of sapling was calculated by the formula π .D².H/4, where D=graft spread and H=Height of primary branch and expressed in cm³. A slight change in the graft spread and height can make much difference. The canopy volume of sapling was found significantly affected by the grafting height at 180 and 240 days after grafting and highly significantly affected at 300 and 360 days after grafting. From 180 to 360 days after grafting, the highest volume of canopy was recorded in sapling grafted at 16 cm height followed by 20 cm grafted ones and the lowest in 4 cm grafted sapling. At 360 days after grafting the highest canopy volume was recorded as 15440 cm³ followed by 9960 cm³ and the lowest 5101 cm³ (Figure 4).

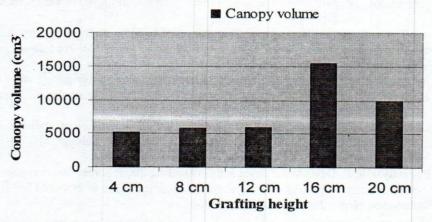


Figure 4. Effect of grafting height on canopy volume of acid lime sapling at 360 days after grafting in Paripatle, Dhankuta, 2010

CONCLUSION

The growth of trifoliate orange seedling is very sluggish in open field condition and very difficult to achieve more height above 20 cm at the point of grafting. From the study, it was found that grafting can successfully be done at any height starting from 4 cm to 20 cm because the effect of height of grafting on success was found statistically non significant. However, the subsequent growth of sapling was found to be affected by the height of grafting. At shorter height, the growth of sapling was found slower and at higher grafting height the growth was found higher up to 16 cm only. Beyond this grafting height the growth was again found lower in the field condition. Thus from the study, the appropriate grafting height of acid lime was 16 cm as observation taken on sapling after one year of grafting revealed that the maximum scion height (42.13 cm), the highest number of leaves per sapling (47.50), the highest growth of scion diameter (55.61%), maximum length of primary branches (31.19 cm), maximum number of secondary branches per sapling

((3.24), the highest length of secondary branches (11.59 cm), the highest canopy volume (15440 cm³) and the highest graft spread (24.35 cm) were recorded at this grafting height.

ACKNOWLEDGEMENTS

The authors would like to acknowledge all the technical staffs of National Citrus Research Program (NCRP), Paripatle, Dhankuta for constant help during the trifoliate orange rootstocks production, grafting, intercultural operations and data recording.

REFERENCES

- Adhikari, A. 2006. Effect of grafting season on success and growth of acid lime (Citrus aurantifolia Swingle) in Rampur, Chitwan. M.Sc. Thesis. Tribhuvan University, IAAS, Rampur, Chitwan, Nepal. 99p.
- APP. 1995. Nepal agriculture perspective plan, final report. Agricultural Projects Services Center, Kathmandu, Nepal and John Mellor Associates, Inc., Washington DC, USA. 47p.
- Aubert, B. and G. Vullin. 1998. Citrus nurseries and planting techniques. GTZ and CIRAD. Montellier Cedex 1, France. 183p.
- Chalise, B. 2010. Effect of grafting dates and methods on success and growth of mandarin (*Citrus reticulata* Blanco) Sapling. M.Sc. Thesis. Tribhuvan University, IAAS, Rampur, Chitwan, Nepal. 133p.
- Dhakal, D. D., S. Bhattarai, H. N. Bhandari and R. C. Bastakoti. 2003. Marketing system of lime and lemon in Nepal. Technical paper, Hill Agriculture Research Project, IAAS, Rampur, Chitwan, Nepal. 24p.
- Dhakal, D. D., T. P. Gotame, S. Bhattarai and H. N. Bhandari. 2002. Assessment of lime and lemon production in Nepal. Journal of Institute of Agriculture and Animal Science 23:49-58.
- Dubey, A. K. and A. K. Singh. 2003. Evaluation of rootstocks of different mandarins (*Citrus reticulata*) under foot-hills conditions of Arunachal Pradesh. Indian Journal of Agricultural Sciences 73(10):527-529.
- Gautam, I. P., D. N. Sah and B. Khatri. 2001. Effect of time of grafting and budding on trifoliate rootstocks for appropriate mandarin orange sapling production. Lumle Working Paper No. 2001/20. Lumle Agricultural Research Station, Lumle, Kaski, Nepal. 6p.
- MOAC. 2009. Statistical information on Nepalese agriculture 2008/2009. Ministry of Agriculture and Cooperatives, Agri-Business Promotion and Statistics Division. Singha Durbar, Kathmandu, Nepal. 153p.
- Poon, T. B. 1999. Effect of grafting methods and time on mandarin sapling production at Dailekh. *In*: Proceedings of the 2nd National Horticultural Research Workshop, Khumaltar, Lalitpur, May 13-15, 1998. pp. 65-68.
- Regmi, C., I. P. Kafle, K. P. Paudyal, R. P. Devkota, G. Aryal and G. Awasthi. 2009. Screen house system to produce quality planting materials of Citrus in Banepa. *In*: Proceedings of the 5th National Seminar on Horticulture, Kathmandu, Nepal, June 9-10, 2008. pp. 89-92.